Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.05.23295073

ABSTRACT

Background Throughout the SARS-CoV-2 pandemic, several vaccines have been rolled out and distinct variants with different severity and immune profiles emerged in England. Using data from enhanced surveillance of COVID-19 in vaccine eligible individuals we investigated the antibody response following SARS-CoV-2 infection according to vaccination status and variant. Methods PCR-positive eligible individuals were identified from community PCR testing data in England between February 2021 and April 2022 and contacted by nurses to complete questionnaires at recruitment and 21 days post recruitment. Individuals were sent self-sampling kits and self-sampled nasal/oropharyngeal swabs were taken day 1, day 3 and day 7 post-recruitment as well as acute (day 1), convalescent (follow-up) serum and oral fluid samples. Regression analyses were used to investigate how N antibody seroconversion differs by vaccine status, and to investigate how N and S antibody levels differ by vaccine status overall and stratified by variants. Interval-censored analyses and regression analyses were used to investigate the effect of acute S antibody levels on the duration of positivity, the cycle threshold values, the self-reported symptom severity and the number of symptoms reported. Results A total of 1,497 PCR positive individuals were included. A total of 369 (24.7%) individuals were unvaccinated, 359 (24.0%) participants were infected with Alpha, 762 (50.9%) with Delta and 376 (25.2%) with Omicron. The median age of participants was 49 years old (IQR 39-57). Convalescent anti-N antibody levels were lower in vaccinated individuals and convalescent anti-S antibody levels were higher in vaccinated individuals and increased with the number of doses received. Acute anti-S antibody level increased with the number of doses received. Higher acute anti-S antibody levels were associated with a shorter duration of positivity (overall and for the Delta variant). Higher acute anti-S antibody levels were also associated with higher Ct values (overall and for the Alpha and Delta variants). There was no association between the acute anti-S antibody level and self-reported symptom severity. Individuals with higher acute anti-S antibody level were less likely to report six or more symptoms (overall and for Delta variant). Conclusion Understanding the characteristics of the antibody response, its dynamics over time and the immunity it confers is important to inform future vaccination strategies and policies. Our findings suggest that vaccination is associated with high acute anti-S antibody level but reduced convalescent anti-N antibody level. High anti-S antibody level is associated with reduced duration of infection, reduced infectiousness and may also be associated with reduced symptoms severity and number of symptoms.


Subject(s)
COVID-19
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.15.23285923

ABSTRACT

SARS-CoV-2 immune-escape variants have only been observed to arise in immunosuppressed COVID-19 cases, during prolonged viral shedding. Through daily longitudinal RT-qPCR, quantitative viral culture and sequencing, we observe for the first time the evolution of transmissible variants harbouring mutations consistent with immune-escape in mild community cases within 2 weeks of infection.


Subject(s)
COVID-19
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1895370.v1

ABSTRACT

Since the first reports of hepatitis of unknown aetiology occurring in UK children, over 1000 cases have been reported worldwide, including 268 cases in the UK, with the majority younger than 6 years old. Using genomic, proteomic and immunohistochemical methods, we undertook extensive investigation of 28 cases and 136 control subjects. In five cases who underwent liver transplantation, we detected high levels of adeno-associated virus 2 (AAV2) in the explanted livers. AAV2 was also detected at high levels in blood from 10/11 non-transplanted cases. Low levels of Adenovirus (HAdV) and Human Herpesvirus 6B (HHV-6B), both of which enable AAV2 lytic replication, were also found in the five explanted livers and blood from 15/17 and 6/9 respectively, of the 23 non-transplant cases tested. In contrast, AAV2 was detected at low titre in 6/100 whole bloods from child controls from cohorts with presence or absence of hepatitis and/or adenovirus infection. Our data show an association of AAV2 at high titre in blood or liver tissue, with unexplained hepatitis in children infected in the recent HAdV-F41 outbreak. We were unable to find evidence by electron microscopy, immunohistochemistry or proteomics of HAdV or AAV2 viral particles or proteins in explanted livers, suggesting that hepatic pathology is not due to direct lytic infection by either virus. The potential that AAV2, although not previously associated with disease, may, together with HAdV-F41 and/or HHV-6, be causally implicated in the outbreak of unexplained hepatitis, requires further investigation.


Subject(s)
Hepatitis , Adenoviridae Infections
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267615

ABSTRACT

Abstract Background A rapid increase in cases due to the SARS-CoV-2 Omicron (B.1.1.529) variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines. Methods We used a test-negative case-control design to estimate vaccine effectiveness (VE) against symptomatic disease caused by the Omicron and Delta variants in England. VE was calculated after primary immunisation with two BNT162b2 or ChAdOx1 doses, and at 2+ weeks following a BNT162b2 booster. Results Between 27 November and 06 December 2021, 581 and 56,439 eligible Omicron and Delta cases respectively were identified. There were 130,867 eligible test-negative controls. There was no effect against Omicron from 15 weeks after two ChAdOx1 doses, while VE after two BNT162b2 doses was 88.0% (95%CI: 65.9 to 95.8%) 2-9 weeks after dose 2, dropping to between 34 and 37% from 15 weeks post dose 2.From two weeks after a BNT162b2 booster, VE increased to 71.4% (95%CI: 41.8 to 86.0%) for ChAdOx1 primary course recipients and 75.5% (95%CI: 56.1 to 86.3%) for BNT162b2 primary course recipients. For cases with Delta, VE was 41.8% (95%CI: 39.4-44.1%) at 25+ weeks after two ChAdOx1 doses, increasing to 93.8% (95%CI: 93.2-94.3%) after a BNT162b2 booster. With a BNT162b2 primary course, VE was 63.5% (95%CI: 61.4 to 65.5%) 25+ weeks after dose 2, increasing to 92.6% (95%CI: 92.0-93.1%) two weeks after the booster. Conclusions Primary immunisation with two BNT162b2 or ChAdOx1 doses provided no or limited protection against symptomatic disease with the Omicron variant. Boosting with BNT162b2 following either primary course significantly increased protection.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.10.21267583

ABSTRACT

Background The role of educational settings on SARS-CoV-2 infection and transmission remains controversial. We investigated SARS-CoV-2 infection, seroprevalence and seroconversions rates in secondary schools during the 2020/21 academic year, which included the emergence of the more transmissible Alpha and Delta variants, in England. Methods The UK Health Security Agency (UKHSA) initiated prospective surveillance in 18 urban English secondary schools. Participants had nasal swabs for SARS-CoV-2 RT-PCR and blood sampling for SARS-CoV-2 Nucleoprotein and Spike protein antibodies at the start (Round 1: September-October 2020) and end (Round 2: December 2021) of the autumn term, when schools reopened after national lockdown was imposed in January 2021 (Round 3: March-April) and end of the academic year (Round 4: May-July). Findings We enrolled 2,314 participants (1277 students, 1037 staff). In-school testing identified 31 PCR-positive participants (20 students, 11 staff). Another 247 confirmed cases (112 students, 135 staff) were identified after linkage with national surveillance data, giving an overall positivity rate of 12.0% (278/2313; staff [14.1%, 146/1037] vs students [10.3%, 132/1276; p=0.006). Nucleoprotein-antibody seroprevalence increased for students and staff between Rounds 1-3 but changed little in Round 4, when the Delta variant was the dominant circulating strain. Overall, Nucleoprotein-antibody seroconversion was 18.4% (137/744) in staff and 18.8% (146/778) in students, while Spike-antibody seroconversion was higher in staff (72.8% (525/721) than students (21.3%, 163/764) because of vaccination. Interpretation SARS-CoV-2 infection and transmission in secondary schools remained low when community infection rates were low because of national lockdown, even after the emergence of the Delta variant


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.26.21265497

ABSTRACT

In March 2020, the Rare and Imported Pathogens Laboratory at Public Health England, Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing PHE, DHSC and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved sensitivity of 91.39% ([≥]14 days 92.74%, [≥]21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and inter-assay precision, correlation to neutralisation and assay linearity.


Subject(s)
COVID-19
8.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3895741

ABSTRACT

Background: Following the full re-opening of schools in England and emergence of the SARS-CoV-2 Alpha variant, we investigated the risk of SARS-CoV-2 infection in students and staff who were contacts of a confirmed case in a school bubble (school groupings with limited interactions), along with their household members. Methods: Primary and secondary school bubbles were recruited into sKIDsBUBBLE after being sent home to self-isolate following a confirmed case of COVID-19 in the bubble. Bubble participants and their household members were sent home-testing kits comprising nasal swabs for RT-PCR testing and whole genome sequencing, and oral fluid swabs for SARS-CoV-2 antibodies. Results: During November-December 2020, 14 bubbles were recruited from 7 schools, including 269 bubble contacts (248 students, 21 staff) and 823 household contacts (524 adults, 299 children). The secondary attack rate was 10.0% (6/60) in primary and 3.9% (4/102) in secondary school students, compared to 6.3% (1/16) and 0% (0/1) among staff, respectively. The incidence rate for household contacts of primary school students was 6.6% (12/183) and 3.7% (1/27) for household contacts of primary school staff. In secondary schools, this was 3.5% (11/317) and 0% (0/1), respectively. Household contacts were more likely to test positive if their bubble contact tested positive although there were new infections among household contacts of uninfected bubble contacts. Interpretation: Compared to other institutional settings, the overall risk of secondary infection in school bubbles and their household contacts was low. Our findings are important for developing evidence-based infection prevention guidelines for educational settings.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.14.21260496

ABSTRACT

Background In England, the rapid spread of the SARS-Cov-2 Alpha (B.1.1.7) variant from November 2020 led to national lockdown, including school closures in January 2021. We assessed SARS-CoV-2 infection, seroprevalence and seroconversion in students and staff when secondary schools reopened in March 2021. Methods Public Health England initiated SARS-CoV-2 surveillance in 18 secondary schools across six regions in September 2020. Participants provided nasal swabs for RT-PCR and blood samples for SARS-CoV-2 antibodies at the beginning (September 2020) and end (December 2020) of the autumn term and at the start of the spring term (March 2021). Findings In March 2021, 1895 participants (1100 students, 795 staff) were tested; 5.6% (61/1094) students and 4.4% (35/792) staff had laboratory-confirmed SARS-CoV-2 infection between December 2020 and March 2021. Nucleoprotein antibody seroprevalence was 36.3% (370/1018) in students and 31.9% (245/769) in staff, while spike protein antibody prevalence was 39.5% (402/1018) and 59.8% (459/769), respectively, similar to regional community seroprevalence. Between December 2020 and March 2021 (median 15.9 weeks), 14.8% (97/656; 95% CI: 12.2-17.7) students and 10.0% (59/590; 95% CI: 7.7-12.7) staff seroconverted. Weekly seroconversion rates were similar from September to December 2020 (8.0/1000) and from December 2020 to March 2021 (7.9/1000; students: 9.3/1,000; staff: 6.3/1,000). Interpretation By March 2021, a third of secondary school students and staff had serological evidence of prior infection based on N-antibody seropositivity, and an additional third of staff had evidence of vaccine-induced immunity based on S-antibody seropositivity. Further studies are needed to assess the impact of the Delta variant. Research in Context Evidence Before this study The Alpha variant is 30-70% more transmissible than previously circulating SARS-CoV-2 strains in adults and children. One outbreak investigation in childcare settings estimated similar secondary attack rates with the Alpha variant in children and adults. There are limited data on the impact of the Alpha variant in educational settings. In England, cases in primary and secondary school aged children increased rapidly from late November 2020 and peaked at the end of December 2020, leading to national lockdown including school closures. Added Value of This Study Seroconversion rates in staff and students during December 2020 to March 2021, when the Alpha variant was the primary circulating strain in England, were similar to the period between September 2020 and December 2020 when schools were fully open for in-person teaching. By March 2021, a third of students overall and more than half the students in some regions were seropositive for SARS-CoV-2 antibodies. Among staff, too, around a third had evidence of prior infection on serological testing and a further third had vaccine-induced immunity. Implications of all the Available Evidence SARS-CoV-2 antibody seroprevalence was high among secondary school students in March 2021 and is likely to be higher following the emergence of an even more transmissible Delta variant in May 2021. Education staff are increasingly being protected by the national COVID-19 immunisation programme. These findings have important implications for countries that are considering vaccination of children to control the pandemic


Subject(s)
COVID-19
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.07.21260121

ABSTRACT

Seroepidemiological studies to monitor antibody kinetics are important for assessing the extent and spread of SARS-CoV-2 in a population. Non-invasive sampling methods are advantageous to reduce the need for venepuncture, which may be a barrier to investigations particularly in paediatric populations. Oral Fluids are obtained by gingiva-crevicular sampling from children and adults and are very well accepted. ELISA based on these samples have acceptable sensitivity and specificity compared to conventional serum-based antibody ELISAs and are suitable for population-based surveillance. We describe the development and evaluation of SARS-COV-2 IgG ELISAs using SARS-CoV-2 viral nucleoprotein (NP) and spike (S) proteins in IgG isotype capture format and an indirect receptor-binding-domain (RBD) IgG ELISA, intended for use in children. All three assays were assessed using a panel of 1999 paired serum and oral fluids from children and adults participating in national primary school SARS-CoV-2 surveillance studies during and after the first and second pandemic wave in the UK. The anti NP IgG capture assay was the best candidate, with an overall sensitivity of 75% (95% CI: 71-79%) specificity of 99% (95% CI: 78-99%) when compared with paired serum antibodies measured using a commercial assay SARS-CoV-2 nucleoprotein IgG assay (Abbott, Chicago, IL, USA). Higher sensitivity was observed in children (80%, 95% CI: 71-88%) compared to adults (67%, CI: 60%-74%). Oral fluid assays using spike protein and RBD antigens were also 99% specific and achieved reasonable but lower sensitivity in the target population (78%, 95% CI (68%-86%) and 53%, 95% CI (43%-64%), respectively). Conclusion statementOral Fluid assays based on the detection of SARS-CoV-2 antibodies are a suitable tool for population based seroepidemiology studies in children.

11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.30.446322

ABSTRACT

Memory B cells (MBC) can provide a recall response able to supplement waning antibodies with an affinity-matured response better able to neutralise variant viruses. We studied a cohort of vulnerable elderly care home residents and younger staff, a high proportion of whom had lost neutralising antibodies (nAb), to investigate their reserve immunity from SARS-CoV-2-specific MBC. Class-switched spike and RBD-tetramer-binding MBC with a classical phenotype persisted five months post-mild/asymptomatic SARS-CoV-2 infection, irrespective of age. Spike/RBD-specific MBC remained detectable in the majority who had lost nAb, although at lower frequencies and with a reduced IgG/IgA isotype ratio. Functional spike/S1/RBD-specific recall was also detectable by ELISpot in some who had lost nAb, but was significantly impaired in the elderly, particularly to RBD. Our findings demonstrate persistence of SARS-CoV-2-specific MBC beyond loss of nAb, but highlight the need for careful monitoring of functional defects in RBD-specific B cell immunity in the elderly.


Subject(s)
Lymphoma, B-Cell , COVID-19
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.22.21257658

ABSTRACT

Background: The B.1.617.2 COVID-19 variant has contributed to the surge in cases in India and has now been detected across the globe, including a notable increase in cases in the UK. We estimate the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against this variant. Methods: A test negative case control design was used to estimate the effectiveness of vaccination against symptomatic disease with both variants over the period that B.1.617.2 began circulating with cases identified based on sequencing and S-gene target status. Data on all symptomatic sequenced cases of COVID-19 in England was used to estimate the proportion of cases with B.1.617.2 compared to the predominant strain (B.1.1.7) by vaccination status. Results: Effectiveness was notably lower after 1 dose of vaccine with B.1.617.2 cases 33.5% (95%CI: 20.6 to 44.3) compared to B.1.1.7 cases 51.1% (95%CI: 47.3 to 54.7) with similar results for both vaccines. With BNT162b2 2 dose effectiveness reduced from 93.4% (95%CI: 90.4 to 95.5) with B.1.1.7 to 87.9% (95%CI: 78.2 to 93.2) with B.1.617.2. With ChAdOx1 2 dose effectiveness reduced from 66.1% (95% CI: 54.0 to 75.0) with B.1.1.7 to 59.8% (95%CI: 28.9 to 77.3) with B.1.617.2. Sequenced cases detected after 1 or 2 doses of vaccination had a higher odds of infection with B.1.617.2 compared to unvaccinated cases (OR 1.40; 95%CI: 1.13-1.75). Conclusions: After 2 doses of either vaccine there were only modest differences in vaccine effectiveness with the B.1.617.2 variant. Absolute differences in vaccine effectiveness were more marked with dose 1. This would support maximising vaccine uptake with two doses among vulnerable groups.


Subject(s)
COVID-19
14.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3766774

ABSTRACT

Background: Many countries re-opened schools after national lockdown but little is known about the risk of SARS-CoV-2 infection and transmission in educational settings. Public Health England conducted six-month prospective surveillance in primary schools across England. Methods: The COVID-19 Surveillance in School KIDs (sKIDs) study included two arms: weekly nasal swabs for ≥4 weeks following partial reopening during the summer half-term (June to mid-July 2020) and blood sampling with nasal and throat swabs at the beginning and end of the summer half-term, and, following full reopening in September 2020, at the end of the autumn term (end-November 2020). Results: In round 1, 12,026 participants (59.1% students, 40.9% staff) in 131 schools had 43,091 swabs taken. Weekly SARS-CoV-2 infection rates were 3.9 (1/25,537; 95% CI, 0.10-21.8) and 11.3 (2/17,554; 95% CI, 1.4-41.2) per 100,000 students and staff. At recruitment, N-antibody positivity in 45 schools was 11.1% (91/817; 95%CI, 9.2-13.5%) in students and 15.1% (209/1381; 95%CI, 13.3-17.1%) in staff, similar to local community seroprevalence. Seropositivity was not associated with school attendance during lockdown or staff contact with students. Round 2 participation was 73.7% (1,619/2,198) and only five (4 students, 1 staff) seroconverted. In round 3, when 61.9% (1,361/2,198) of round 1 participants were re-tested, seroconversion rates were 3.4% (19/562; 95%CI, 2.0-5.2) in students and 3.9% (36/930; 95%CI, 2.7-5.3) in staff. Conclusions: SARS-CoV-2 infection rates, assessed using nasal swabs for acute infection and serum antibodies for prior infection, were low following partial and full reopening of primary schools in England.Funding Statement: This surveillance was funded by the Department of Health and Social Care (DHSC).Declaration of Interests: None to declare.Ethics Approval Statement: The surveillance protocol was approved by the Public Health England Research Ethics Governance Group (R&D REGG Ref: NR0209, 16 May 2020).


Subject(s)
COVID-19
15.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.13.21249642

ABSTRACT

BackgroundThere is an urgent need to better understand whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection. MethodsA large multi-centre prospective cohort was recruited from publicly funded hospital staff in the UK. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed fortnightly questionnaires on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive or prior PCR/antibody test positive) or negative cohort (antibody negative, not previously known to be PCR/antibody positive). Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, possible (subdivided by symptom-status)) depending on hierarchy of evidence. Individuals in the primary infection were excluded from this analysis if infection was confirmed by antibody only. Reinfection rates in the positive cohort were compared against new PCR positives in the negative cohort using a mixed effective multivariable logistic regression analysis. FindingsBetween 18 June and 09 November 2020, 44 reinfections (2 probable, 42 possible) were detected in the baseline positive cohort of 6,614 participants, collectively contributing 1,339,078 days of follow-up. This compares with 318 new PCR positive infections and 94 antibody seroconversions in the negative cohort of 14,173 participants, contributing 1,868,646 days of follow-up. The incidence density per 100,000 person days between June and November 2020 was 3.3 reinfections in the positive cohort, compared with 22.4 new PCR confirmed infections in the negative cohort. The adjusted odds ratio was 0.17 for all reinfections (95% CI 0.13-0.24) compared to PCR confirmed primary infections. The median interval between primary infection and reinfection was over 160 days. InterpretationA prior history of SARS-CoV-2 infection was associated with an 83% lower risk of infection, with median protective effect observed five months following primary infection. This is the minimum likely effect as seroconversions were not included. FundingDepartment of Health and Social Care and Public Health England, with contributions from the Scottish, Welsh and Northern Irish governments.


Subject(s)
COVID-19
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.15.20247981

ABSTRACT

BACKGROUND The overall risk of reinfection in individuals who have previously had COVID-19 is unknown. To determine if prior SARS-CoV-2 infection (as determined by at least one positive commercial antibody test performed in a laboratory) in healthcare workers confers future immunity to reinfection, we are undertaking a large-scale prospective longitudinal cohort study of healthcare staff across the United Kingdom. METHODS Population and Setting: staff members of healthcare organisations working in hospitals in the UK At recruitment, participants will have their serum tested for anti-SARS-CoV-2 at baseline and using these results will be initially allocated to either antibody positive or antibody negative cohorts. Participants will undergo antibody and viral RNA testing at 1-4 weekly intervals throughout the study period, and based on these results may move between cohorts. Any results from testing undertaken for other reasons (e.g. symptoms, contact tracing etc.) or prior to study entry will also be included. Individuals will complete enrolment and fortnightly questionnaires on exposures and symptoms. Follow-up will be for at least 12 months from study entry. Outcome: The primary outcome of interest is a reinfection with SARS -CoV-2 during the study period. Secondary outcomes will include incidence and prevalence (both RNA and antibody) of SARS-CoV-2, viral genomics, viral culture, symptom history and antibody/neutralising antibody titres. CONCLUSION This large study will help us to understand the impact of the presence of antibodies on the risk of reinfection with SARS-CoV-2; the results will have substantial implications in terms of national and international policy, as well as for risk management of contacts of COVID-19 cases. TRIAL REGISTRATION IRAS ID 284460, HRA and Health and Care Research Wales approval granted 22 May 2020.


Subject(s)
COVID-19
17.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3666236

ABSTRACT

Background: We investigated six London care homes experiencing a COVID-19 outbreak and found very high rates of SARS-CoV-2 infection among residents and staff. Here we report follow-up investigations including antibody testing in the same care homes five weeks later.Methods: Residents and staff involved in the initial investigation had a repeat nasal swab for SARS-CoV-2 RT-PCR and a blood test for SARS CoV-2 antibodies using ELISA based on SARS-CoV-2 native viral antigens derived from infected cells and virus neutralisation.Findings: Of the 518 residents and staff in the initial investigation, 208/241 (86.3%) surviving residents and 186/254 (73.2%) staff underwent repeat testing. Almost all SARS-CoV-2 RT-PCR positive residents and staff were also antibody positive five weeks later, whether symptomatic (residents 35/35, 100%; staff, 22/22, 100%) or asymptomatic (residents 32/33, 97.0%; staff 21/22, 95.1%). Symptomatic but SARS-CoV-2 RT-PCR negative residents and staff also had high seropositivity rates (residents 23/27, 85.2%; staff 18/21, 85.7%) as did asymptomatic RT-PCR negative individuals (residents 62/92, 67.3%; staff 95/143, 66.4%). Neutralising antibody was present in 118/132 (89.4%) seropositive individuals and was not associated with age or symptoms. Ten residents (10/108, 9.3%) remained RT-PCR positive but with lower RT-PCR cycle threshold values; all 7 tested were seropositive. New infections were detected in three residents and one staff.Interpretation: RT PCR provides a point prevalence of SARS-CoV-2 infection but significantly underestimates total exposure in outbreak settings. In care homes experiencing large COVID-19 outbreaks, most residents and staff had neutralising SARS-CoV-2 antibodies, which was not associated with age or symptoms.Funding: NoneDeclaration of Interests: None.Ethics Approval Statement: The research protocol was approved by the PHE Research Ethics and Governance Group (REGG Ref: NR0204, 07 May 2020).


Subject(s)
COVID-19
18.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3634867

ABSTRACT

Background: The COVID-19 pandemic in the UK began in late January 2020 and peaked in mid-April before declining. Children typically develop only very mild symptoms and it remains unclear what role children play in the spread of COVID-19. The aim of this study was to report the prevalence of SARS-CoV-2 antibodies in healthy children of healthcare workers. Methods: Healthy children of healthcare workers, were recruited in London during May 2020. Participants had nose and throat swabs tested for SARS-CoV-2 infection via RT-qPCR and blood serums samples for SARS-CoV-2 immunoglobulin G (IgG) antibodies. Findings: A total of 215 children from 126 families took part and 25(12%) were seropositive for SARS-CoV-2. Children of clinical healthcare workers were significantly more likely to be seropositive 23/133(17%) than those of non-clinical healthcare workers 2/83(2%); p=0.001.In children of parents with confirmed COVID-19, seropositivity was 19/47(40%) compared to 3/44(7%) in children of parents with suspected COVID-19 and 3/124(2%) in children of asymptomatic parents (p<0.001). Overall, 15/83(18%) of symptomatic children were seropositive compared to 10/132(8%) of asymptomatic children (p=0.02). The most commonly reported symptoms were fever 7/25(28%), headache 4/25(16%) and lethargy 5/25(20%). None of the children were hospitalised with COVID-19. Interpretation: The secondary attack rate in children of healthcare workers with confirmed COVID-19 was 40% compared to 2% of children in families with no reported symptoms. One in three seropositive children were asymptomatic.Trial Registration: NCT0434740Funding Statement: This study was funded by the Public Health Agency [COM/5596/20].Declaration of Interests: None disclosed.Ethics Approval Statement: The London (Chelsea) research ethics committee reviewed the study protocol and provided a favourable outcome (Project ID 282617, OREC ID 20/HRA/1731).


Subject(s)
COVID-19
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.18.20189647

ABSTRACT

Background: The potential impact of COVID-19 alongside influenza on morbidity, mortality and health service capacity is a major concern as the Northern Hemisphere winter approaches. This study investigates the interaction between influenza and COVID-19 during the latter part of the 2019-20 influenza season in England. Methods: Individuals tested for influenza and SARS-CoV-2 were extracted from national surveillance systems between 20/01/2020 and 25/04/2020. To estimate influenza infection on the risk of SARS-CoV-2 infection, univariable and multivariable analyses on the odds of SARS-CoV-2 in those who tested positive for influenza compared to those who tested negative for influenza. To assess whether a coinfection was associated with severe SARS-CoV-2 outcome, univariable and multivariable analyses on the odds of death adjusted for age, sex, ethnicity, comorbidity and coinfection status. Findings: The risk of testing positive for SARS-CoV-2 was 68% lower among influenza positive cases, suggesting possible pathogenic competition between the two viruses. Patients with a coinfection had a risk of death of 5.92 (95% CI, 3.21-10.91) times greater than among those with neither influenza nor SARS-CoV-2 suggesting possible synergistic effects in coinfected individuals. The odds of ventilator use or death and ICU admission or death was greatest among coinfection patients showing strong evidence of an interaction effect compared to SARS-CoV-2/influenza acting independently. Interpretation: Cocirculation of these viruses could have a significant impact on morbidity, mortality and health service demand. Testing for influenza alongside SARS-CoV-2 and maximising influenza vaccine uptake should be prioritised to mitigate these risks.


Subject(s)
COVID-19 , Coinfection , Death
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.19.20177188

ABSTRACT

Background: Households appear to be the highest risk setting for transmission of COVID-19. Large household transmission studies were reported in the early stages of the pandemic in Asia with secondary attack rates ranging from 5-30% but few large scale household transmission studies have been conducted outside of Asia. Methods: A prospective case ascertained study design based on the World Health Organization FFX protocol was undertaken in the UK following the detection of the first case in late January 2020. Household contacts of cases were followed using enhanced surveillance forms to establish whether they developed symptoms of COVID-19, became confirmed cases and their outcomes. Household secondary attack rates and serial intervals were estimated. Individual and household basic reproduction numbers were also estimated. The incubation period was estimated using known point source exposures that resulted in secondary cases. Results: A total of 233 households with two or more people were included with a total of 472 contacts. The overall household SAR was 37% (95% CI 31-43%) with a mean serial interval of 4.67 days, an R0 of 1.85 and a household reproduction number of 2.33. We find lower secondary attack rates in larger households. SARs were highest when the primary case was a child. We estimate a mean incubation period of around 4.5 days. Conclusions: High rates of household transmission of COVID-19 were found in the UK emphasising the need for preventative measures in this setting. Careful monitoring of schools reopening is needed to monitor transmission from children.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL